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In a recent paper, L. Lorch [I] has refined a standard inequality
[2, Theorem 7.33.2, p. 171] for ultraspherical (Gegenbauer) polynomials of
degree n and parameter rJ. by proving that

(1)

for n = 0, I, 2, ... ; 0 < rJ. < I. This has been proved previously for the special
case of Legendre polynomials, where (X = 1, by V. A. Antonov and K. V.
HolSevnikov [3] and earlier still by A. Martin [4].

This bound has the disadvantage that it tends to infinity as e~ 0, n, and
this has led the author of [4], in a study of the high energy behaviour of
scattering amplitudes at fixed scattering angle, to construct the following
"uniform" bound for Legendre polynomials P II (cos e):

IPII(cose)I~[I+n(n+I)(I-cos}e)]-I4, n=0,1,2, ...;0~e~n. (2)

There are three nice features of this bound:

(i) It remains finite (~I) for all 0 ~ e~ n.

(ii) For fixed e in [0, n], it has the correct behaviour (up to a con
stant factor (n/2)1/}) as n ~ c/).

(iii) It is very good near e= 0 and n since the bound and the
function being bounded have the same modulus at these values of e and
similarly for their first derivatives.

We will follow closely the methods of [4] to extend these results to the
case of general ultraspherical polynomials by proving that for n = 0, I, 2, ...
and all 0 ~ e~ n,
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where

(3 )

with

Ii = ::<:;

= Max [a,f(::<:)];

I > a;? 0.065

0.065> a >0 (4)

_ I {[['(::<: + 1)(1 + 2a)(2 + ::<:)1 2'12' } 1
/(::<:)-2(::<:+1) 21-' -0.503 (5)

The bound (3) again has the good properties (i )-( iii) except that when
0.065> a > 0 the bound and the polynomial being bounded may not have
the same derivative at tI = 0, n. Also our bounds reduce to the bound given
in [4] for a =~. They also lead in the limit n ---> CIJ to' the following bound
on Bessel functions;

IJ,_~(z)I~lzI21' ~J'(a+~) 1{1+z2/[(20:+1)!3(a)]}-'i2, 0<0:<1

(6)

for all real z where fJ( 0:) is defined in (4).

I. BOUNDS NEAR tI = 0 AND n

Since the ultraspherical polynomials are even or odd functions we need
to consider only values of tI in the interval [0, n12] and prove the following
result:

THEOREM 1. Let tI = tI 1 be the zero of p~'J (cos tI) nearest tI = 0, then

{
P(')(l)' } -,:2

P(')(cos 8),< P(')(I) 1 + n (I - cos 2 tI)
n '" n aP~')(I) ,

for n = 0, I, 2, ... ,°< a < I.

Proof Let y(x) = P~')(cos 8), where x = cos 8. Then from the defining
equation for ultraspherical polynomials,



INEQUALITIES FOR P),X)(COS 8) AND J x l(Z)
2

333

~ {(I - X2)! +x y'(X)} = (1- X 2 )(1 +x) y"(X) - 2x(1 +:x) y'(x)(1 - x 2t
dx

= - (1 - X2)X n(n + 2:x) y(X) - xy'(X)( 1 - X2)x.

Therefore

(I - X2)! +x y'(X) =r[(1 - t2)X n(n + 2:x) y(t) + ty'(t)( 1 - t2n dt
,

? r(1 - t 2 t dt n(n + 2:x) y(X) + ~r2t(1- t2 t dt y'(X)
, x

? {n(n+2:x)(I-xt+ ' (1 +xt y(X)

+ W- X
2 )H 1 y'(X) }/(:x + I),

where use has been made of the convexity of y(x) in the interval
[cos 8 1 , I]. Therefore for these values of x,

The function,

, 2n(n+2a)y(x) 2 y'(1)
y (x)? (1 +x)(2a+ 1) = (1 +x)y(x) y(1). (8)

has the properties that{(1)=0 andf'(x)~O for COS81~X~I, on using
(8). Therefore f(x)? 0 and the theorem follows immediately.

2. UNIFORM BOUNDS

To extend the bound (7) to the whole interval 0 ~ 8 ~ n, we will attempt
to show that it is worse than that given by (I) for all ()! ~ () ~ n - () I. This
we have found possible for 0.065 < a < 1 but for smaller values of a we have
had to take a slightly modified bound. Note that for n = 0, I, the result
given by (7) already covers the whole interval so for the remainder of this
section we take n:;::' 2. First we need the following result.

LEMMA 1. For ~ ~ a ~ 1; n = 2,3, ...,

[
r(a)(n+a)(l X)P~X)(I)l2/X_n(n+2a)>-n2{ n 1/X _ 4 }

2!-x :x(2a + I)?' 4 r(a + ~)2/x a(2a + 1) .

(9)

MQi49i4·'
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Proof The left-hand side
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where inequality (8) of [I] has been used to obtain the second line. There
is another result we will have to use in the case when 0 < IX < 1and it is
given by the following lemma.

LEMMA 2. When 0<1X<1, un =r(n+21X)(n+IX)1-2.a/r(n+ 1) increases
as n increases for n = 2, 3, 4, ...

Proof

Un l (1- 21X)Jl I J' -- 2a--- 1+ 1----
U n + 1 n+21X n+IX+1

< II + (I - 21X)Jll _ (1- 21X) _IX(I- 21X) 1X(1- 21X)(I + 21X)J
n+21X n+ct+1 (n+0:+1)2 3(n+et+l)3

(I-2et) ct l (' +20:)( n+21X )J
:<s; 1 + (n + 2et )( n + 0: + I )2 IX - -3- n + et + 1 .

The R.H.S. is less than one for 0 < et < 1; n = 2, 3,... so Un increases with n.

Two more lemmas are needed to extend our bound to the whole interval
O:<s; cos e:<s; 1.

LEMMA 3.

is a decreasing function of IX in the interval [1, 1].

Proof
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For i:S;a:S;l, 10gT(a+!)<0 and -(2/a)(r'(a+WT(a+!)):s;0.5/a so
that,

df 1.15 0.5
-~--+-~O
da '" a2 a '" .

Similarly for!:S; a < i,

so the lemma is proved.

LEMMA 4. For! > a ~ 0.065,

(10)

(11 )

>- 1 {[r(a+ 1)(1 +2a)(2+a)I-2~J2i~ _0.503}-1. (12)
a"" 2(a + 1) 21 - ~

Proof First take the inequality in the form

g(a) 0= T(a + 1)( 1 + 2a)( 2 + a) 1 - 3,/2 2' - 1

~{0.503(2+a)(1 + a(1 ~aJr/2 o=h(a). (13)

Now

d [ 1 J'~- 1+---
da a(l + a)

1 [ 1 J~/2{[ 1 J (l + 2a) }
=2 1 + a(1 +a) log 1+ a(l +a) - [1 + a(C'l + 1)](1 +a) .

(14 )

For O<a<!,

(1 + 2iX) } 0
[1 + a( IX + 1)] [1 + a] :s; .

(15 )

Therefore

d[ 1 J~/2 l[ 1 J~/2{ 716}
da 1 + a(1 +a) ~2 1 + a(l +tx) log3"-21 ~O, (16 )
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so that h(Ct.) defined as the R.H.S. of (13) is an increasing function of Ct. in
(0, n Similarly if g(Ct.) is defined as the L.H.S. of (13), then

(17)

By using the fact that (r'(cJ. + 1))/(r(Ct. + 1)) is a monotOnIC Increasing
function of Ct. in the intervals (0, ~) and (~, 1), it is straightforward to prove
separately in these two intervals that the right-hand side of (17) is positive.
Therefore g( Ct.) as well as h( Ct.) is an increasing function of Ct. in (0, n
Because of these properties, if we can choose a decreasing sequence {Ct. n} of
values for Ct. such that

g(CJ./l+l)~h(Ct.n)' (18 )

then the inequality (13) holds in the whole interval [Ct./l + I' Ct.nl
By numerical evaluation the inequality (13) is satisfied for Ct. = Ct. o == 1, and

(18) is satisfied for n = 0 if Ct. l = 0.3. Hence (12) is satisfied in the interval
[0.3, 0.51 Similarly, (18) holds for n = 1, if we choose Ct. 2 = 0.17 so that now
(12) holds in [0.17,0.5]. Repeating this process we are able to prove (12)
for the whole interval [0.065,0.5]. We are now in a position to prove the
following theorem.

THEOREM 2. ForO<Ct.<1 andOj:(O:(n-(}j,

Bn(cos 0) ~ An(cos 0), n = 2,3,4,... (19)

where A,,, Bn are the hounds to P~,~)( cos 0) given hy (1) and (3) respectively.

Proof

BI;2i'-A/l2;'=[P~,')(I)J 2i'{I-(I-COS2 (})

xl(r(Ct.)(n+Ct.)('-'IP~')(1))2/' _ P~')(I)'l}
L 2'-' (3P~~)(I) , (20)

where fi is defined in (4). Now n/(n + 1) > 0I> n/2n so that for
OJ :(():(n-O"

2 . 2 l n n
3 l 1.986(I-cos 8)~sIn 8 1 ~ ----3 ~-2-'

2n 48n n
n=2,3,4, .... (21)
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But from Lemma 3,

f 4 (rc) 1/'1
G(a) =: 1 + 0.4965 La(2a + 1) - T(a +!f

~1+0.4965[-4+ 2(2a\1)1 (23)

and the R.H.S. of (23) is negative for 0.8 ~ a ~ 1. Again using Lemma 3 for
a<0.8,

f 4 (rc )
1251G(a)~1+0.4965La(2a+l)- T(1.3)2 (24)

(26)

and the R.H.S. of (24) is negative for 0.505 ~ a < 0.8. Repeating the process
once more, we finally prove the R.H.S. of (22) is negative and hence (19)
holds for all ! ~ a ~ 1. When 0 < a <! the R.H.S. of (20) will be negative for
(}, ~ 8 ~ rc - 8 I if

1 _ 1.986 {fT(n + 2a) r(a)(n + r:t.)(I-'l12/' n(n + 2a)}
n2 L T(n+I)2 11 -'lr(2a) f3(2a+l) <0,

which will be the case from Lemma 2 if

1- 1.986(n + a)2 {f r(2 + 2a) T(a)(2 +r:t.)' 2'1 2/' I}
n2 L T(3)2(1-'lT(2a) fJ(2a+l) <0. (25)

n = 2,3,4'00'
I

Using the fact that (T(2a)/T(a)) = (2(h - Il/rc2 ) T(a + !) it follows after some
algebra that (25) holds if,

I {[T(a+ 1)(1 +2a)(2+a)(I-2'l12/, }
fJ~2(a+l) 2(1-,) -0.503.

This inequality is satisfied for f3 = a when 0.065 ~ a <! as follows from
Lemma 4. For smaller values of a we take f3 equal to the R.H.S. of (26) or
equal to a depending on which is the larger. In either case (19) is then
satisfied.
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The results of Theorems I and 2 may be combined to give the uniform
bound (3) on P~,'I(COS 8) for the whole interval [0, n]. The only small point
to note is that when 0 < iX < 0.065 and 0 ~ 8 ~ 8 1 , the bound (5) may be
worsened by replacing the factor l/iX multiplying (I ~COS2 8) by I/P to give
the uniform bound (3) since for these values of iX, Pmay be greater than IX.

Corresponding bounds on Bessel functions are given by the following
simple corollary.

COROLLARY. For all real z,

when 0 < iX < I, where P( iX) is defined in (4).

Proof We use the well known limit [5],

(~z) -, J,(z) = lim n-'P~," Il)(COS z/n),
11-7;.

where P~," I'J(x) are Jacobi polynomials. If v = f1 = iX - ~

(28)

(29)

Therefore setting v= iX - ~ in (28) and using (29) with our bound (3) we
obtain inequality (27).

3. CONCLUSIONS

We have generalized the "uniform bounds" obtained by Martin [4] for
Legendre polynomials to the case of ultraspherical polynomials. The "nice
features" of the former bounds have been preserved except for the small
range of values of iX close to zero. The problem here is that the bound (5),
in the region up to the first zero of P~')(cos 8), is then "too strong" to be
continued to the whole interval [0, n]. We have chosen to deal with this
difficulty by giving up the requirement that the bound has the same
derivative as the polynomial itself at 8 = 0, but there may be other ways of
handling the problem.

REFERENCES

1. L. LORCH, Inequalities for ultraspherical polynomials and the gamma function, J. Approx,
Theory 40 (1984), 115-120.



INEQUALITIES FOR P~O:)(cos 8) AND Jo:_1(Z)
2

339

2. G. SZEGO, "Orthogonal Polynomials", Amer. Math. Soc., Colloq. Publ. Vol. 23, 4th ed.,
Providence, R.I., 1975.

3. V. A. ANTONOV AND K. V. HOLSENIKOV, An estimate of the remainder in the expansion of
the generating function for the Legendre polynomials (Generalisation and Improvement of
Bernstein's inequality), Vestnik Leningrad Univ. Math. [English trans.] 13 (1981),163-166.

4. A. MARTIN, Unitarity and high energy behaviour of scattering amplitudes, Phys. Rev. 129
(1963) 1432-1436.

5. W. MAGNUS, F. OBERHETTINGER, AND R. P. SONI, "Formula and Theorems for the Special
Functions of Mathematical Physics," Springer-Verlag, Berlin, 1966.


